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ABSTRACT
In this paper we discuss unique architectural elements of
the Los Alamos Message Passing Interface (LA-MPI). LA-
MPI is a high-performance, network fault-tolerant, thread-
safe MPI library designed for terascale clusters that are
inherently unreliable due to their sheer number of system
components and inherent trade-offs between cost and per-
formance. We examine in detail the design concepts used
to implement LA-MPI. These include reliability features,
such as application-level checksumming, message retrans-
mission, and automatic message re-routing. Other key per-
formance enhancing features, such as concurrent message
routing over multiple, diverse network adapters and proto-
cols, and communication-specific optimizations (e.g., shared
memory) are examined.
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1. INTRODUCTION
One consequence of the rise of cluster and grid computing
is the growing concern with fault tolerance of processors,
communication networks, and system infrastructure. This
is because the manufacturing tolerances to which such sys-
tems conform may be inadequate to guarantee error-free ex-
ecution [13] of an application, given the length of a typi-
cal application run and the very large number of individual
systems that are aggregated into a cluster. For example,
a network device may have an error rate which is perfectly
acceptable for a desktop system, but not in a cluster of thou-
sands of nodes, which must run error free for many hours or
even days to complete a scientific calculation.

Similarly to Bosilca [4], we divide messaging fault tolerance
approaches into three levels depending on where in the soft-
ware stack they are implemented. These three levels are:
the upper level (e.g., application level), the mid level (e.g.,
transport level), and lower level approaches (e.g., data link
level). Any software implementation may address fault tol-
erance at one or more of these levels. The levels at which a
fault-tolerant mechanism operates implicitly makes assump-
tions about the type and probability of failures (or faults).

There have been a number of research efforts attempting to
incorporate network and process fault tolerance into mes-
sage passing systems. One of the first efforts to incorpo-
rate fault tolerance into MPI was CoCheck tuMPI [17] from
Technischen University Munich, which addresses fault tol-
erance at an upper level. CoCheck used the Condor [8]
library to checkpoint and then if necessary restart and roll-
back the MPI job. This system’s main drawback was the
need to checkpoint the entire application, which could be
prohibitively expensive in terms of time and scalability for
large applications (like those that would run on a terascale
cluster). Another effort, Starfish MPI [3], is similar in op-
eration to CoCheck, and also operates at an upper level.
However, Starfish uses its own systems to checkpoint jobs,
and does not rely on a flush message protocol to handle com-
munications. Starfish uses “atomic” group communications
protocols based on the Ensemble system [6]. A third upper
level approach is the FT-MPI [5] effort from the University
of Tennessee-Knoxville. FT-MPI handles fault tolerance at
the MPI communicator level, and lets the application devel-
oper decide what course of action they wish to take. The
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Figure 1: LA-MPI Architecture.

application may decide to shrink, rebuild or abort the com-
municator depending on the type of fault.

LA-MPI is an implementation of the Message Passing Inter-
face (MPI) [11], the de facto standard interprocess commu-
nication API for scientific applications, in which we attempt
to address fault tolerance at all of these levels. Our current
efforts are directed at the lower and mid levels. It imple-
ments version 1.2 of the standard, and is integrated with
ROMIO [18] for MPI-IO version 2 support. LA-MPI (a) re-
liably delivers messages in the presence of I/O bus, network
card and wire-transmission errors; (b) survives network card
and path failures (when the operating system survives) and
guarantees delivery of in-flight messages after such a failure;
(c) supports the concurrent use of multiple types of net-
work interface; and (d) implements message striping across
multiple heterogeneous network interfaces, and striping of
message fragments across multiple homogeneous network in-
terfaces. In the next section we motivate the architecture
of the LA-MPI framework that is described in the rest of
the paper. LA-MPI gives the MPI application developers
a guarantee of end-to-end network-fault-tolerance and pro-
vides an excellent substrate for reliable applications.

This paper gives a detailed description of the architecture
of LA-MPI, focusing on its fault-tolerant features.

2. ARCHITECTURE
Figure 1 shows the basic architectural elements of the LA-
MPI library. LA-MPI provides MPI version 1.2 and some
version 2 services by layering MPI routines on a basic set
of User Level Messaging (ULM) interface primitives. ULM
was designed to be a high-performance, fault-tolerant, reli-
able messaging subsystem capable of supporting any number
of MPI implementations, and of being extended to support
different messaging models (e.g., put/get one-sided commu-
nications, etc.).

ULM itself consists of two layers: the Memory and Mes-
sage Layer (MML) and the Send and Receive Layer (SRL).
The MML provides message management services including

message routing (i.e., network path selection), message tag
matching, buffer allocation (for uniform and non-uniform
memory access machines (NUMA)), message retransmission,
and message status tracking. The SRL provides message
transmission and reception over shared memory and differ-
ent network adapters. Each network type, or path, manages
its own resources, and implements its own flow control and
resource exhaustion schemes. All elements of ULM are de-
signed to be non-blocking and thread-safe in operation.

Besides the basic architectural elements of the library, LA-
MPI also implements a run-time system consisting of an
executable, mpirun, and the MPI library for process spawn-
ing, standard I/O handling, job control, and network topol-
ogy wire-up. To start a MPI job, LA-MPI spawns the user
executable as a single process on each machine, specified ei-
ther explicitly or through a resource reservation system such
as Platform’s LSF [15]. This single process upon calling
MPI Init() participates in local network resource discovery,
which is shared globally as needed. After this first phase
of network wire-up, this process forks itself to create all of
the desired MPI processes. As a performance enhancement,
forking is handled by default as a tree of processes. A sec-
ond post-fork phase of network wire-up is then initiated and
performed for those paths that require unique information
from each MPI process (e.g., unique UDP ports for each MPI
process). At the end of this second phase, all processes syn-
chronize through a global barrier. On architectures in which
LA-MPI handles standard I/O redirection and/or job con-
trol itself, the original process never exits MPI Init(), and
instead daemonizes itself to handle I/O redirection, signal
handling, and job termination.

2.1 MPI
By layering MPI on ULM, most MPI routines can be im-
plemented in three phases: argument checking, dispatch to
the appropriate ULM routines, and error code and status
translation, if necessary. A function dispatch table pro-
vides a means of selecting different implementations of col-
lective operations at run-time, to provide optimal perfor-
mance in different environments. This basic layering ap-
proach allows modularity, thereby facilitating code main-
tenance, while minimizing the impact upon performance-
critical services. A compile-time flag controls whether MPI
parameters are validated before use, and the extra perfor-
mance gained can be balanced against the users’ confidence
in the correctness of their MPI-dependent application code.

MPI communicators and groups are shared between the MPI
and ULM layers. They have been augmented to provide
functionality not strictly required by MPI semantics, but
needed for internal operation and performance optimizations
(e.g., precomputed and cached information to reduce the
execution time of repeated code). For example, the group
object has extra maps, such as a mapping of process rank to
local process rank (a unique rank between 0 and n-1 for n lo-
cal processes on a given machine) for faster access into local
arrays of lists. Also, precomputed trees are associated with
each group to enhance the performance of certain collectives
(i.e. gather/scatter operations between multiple machines).
ulm get info() and a number of other ancillary functions are
used by the MPI layer to access information in these ULM
objects.



MPI data types are stored as a “flattened” array of (off-
set, size, sequential offset) structures. Contiguous offsets
are merged into a single entry, and a data type with con-
tiguous, in-order offsets will be represented by a single struc-
ture. This flattened representation is highly efficient for data
packing and unpacking. It is also relatively memory-efficient
for many typical data types, but it does not support a single
MPI job over machines with different byte ordering (i.e., a
mixture of big-endian and little-endian machines), which is
rare in most cluster environments. Constructor information
from MPI type calls, such as MPI Type Struct(), is saved
for MPI Type get envelope() and MPI Type get contents()
(MPI version 2) functionality. This information is traversed
recursively as needed for MPI Get elements(). Reference
counting is implemented for all data types to avoid the un-
necessary overhead of creating duplicates of existing data
types for MPI Type get contents().

2.2 Memory and Message Layer
The Memory and Message Layer (MML) is a set of com-
mon abstractions to ensure reliable message delivery and
matching while minimizing the overhead of memory man-
agement of LA-MPI data structures and buffers. In short,
it is the common code between MPI functionality and net-
work transport-specific code (i.e., the SRL).

User request objects, message send descriptors, and mes-
sage receive descriptors are managed by the MML (figure
2). User request objects track MPI send and receive pa-
rameters, such as the message tag, source or destination
process, communicator, etc. The user request object also
contains completion status information and a flag that indi-
cates whether the operation has completed. The message
send descriptor contains all of the necessary information
to send a message reliably, including lists of message frag-
ment descriptors. The message receive descriptor is used for
matching message fragments with a particular message; the
receive descriptor also keeps track of the number of bytes
received and discarded due to a too small receive buffer.

Some of these objects, as well as other SRL objects, are
stored in arrays of free lists. Each free list may be con-
structed with memory policies to allocate machine memory
close to a given process rank’s processor and its local mem-
ory. This architectural consideration is extremely impor-
tant for good performance on large NUMA machines, such
as SGI’s Origin 2000 and 3000 machines. Memory alloca-
tion for long-lived objects is managed with sub-allocators
that subdivide large chunks of memory, allocated via mal-
loc() or mmap(), into fixed elements whose addresses are
quickly allocated and released by the use of a simple stack
[9]. If the memory is private to a process, then new elements
can be created by allocating another chunk of memory. If
the memory is anonymous shared memory (allocated from
a common ancestor and hence growable only with local pro-
cess synchronization), then resource exhaustion is handled
with simple retry logic until a maximum number of retries
has been reached. Experience on a number of platforms has
shown that the sub-allocator approach is significantly faster
than a general-purpose allocator, such as malloc().

User request objects are separate from send and receive de-
scriptors to support persistent requests efficiently without
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Figure 2: Descriptor Relationships.

replicating the request object. Persistent send requests can
generate multiple message send descriptors that must be
managed concurrently by the MML, because of MPI’s local
send completion semantics. These semantics are extremely
important for low-latency performance in most typical MPI
applications, because the true overhead of a blocking send
as a result of waiting for fragment acknowledgments can be
hidden for those messages whose contents are buffered by
LA-MPI.

All messages are transmitted in fragments whose size is de-
termined by the underlying SRL network transport (or path,
as described later in section 2.2.2). Each network transport
handles its own flow control to prevent resource exhaustion,
and minimize the memory footprint of the library as a whole.
Message fragmentation also allows LA-MPI to transmit a
message simultaneously over different physical interfaces for
a given network transport. For example, on LANL machines
made up of multiple SGI Origin 2000 SMPs interconnected
by a switched network with 2 to 12 HIPPI-800 adapters
each, LA-MPI can effectively transfer an MPI message over
all 2 to 12 adapters simultaneously for greater bandwidth.

Each message send descriptor manages two lists of these
fragment descriptors: FragsToSend for fragments whose re-
sources still need further allocation, and FragsToAck for sent
fragments that are awaiting acknowledgment of successful
delivery from a peer process. Each message send descriptor
itself is stored on one of two similarly paired lists: an incom-
plete list for send descriptors that still need further process-
ing for all fragments to be sent, and an unacknowledged list
for send descriptors awaiting peer acknowledgment.

Message progress from incomplete to unacknowledged for
fragments and all message descriptors is made via calls to
ulm make progress(). These calls are embedded in MPI op-
erations such as wait and test, and other potentially block-
ing calls such as MPI Barrier(). Currently, LA-MPI does
not utilize a separate thread for making progress, but uses
polling in various library entry points. The indiscriminate
use of threads can lead to an oversubscription of proces-



sors, which creates resource contention. Polling prevents
this cache and context switching contention with the ap-
plication’s main code, but does require special design con-
siderations to handle the uncertainties of MPI scheduling.
In particular, the retransmission scheme must be designed
not to overrun receiver resources simply because the remote
process is doing non-MPI processing at the moment.

2.2.1 Fragment Retransmission and Checksumming
Unlike many MPI libraries that consider all underlying com-
munication perfectly reliable, LA-MPI optionally supports
sender-side retransmission of messages by checking the unac-
knowledged list every 5 seconds (adjustable at compile time)
for message send descriptors that have exceeded their time-
out periods. This retransmission scheme is appropriate for
low error rate environments, typical of most clusters. Each
network transport is responsible for arranging to retransmit
the necessary fragments. Each fragment’s retransmission
time is calculated using a truncated exponential back-off
scheme; this avoids resource exhaustion at a receiving pro-
cess that is busy doing non-MPI computation. Fragments
that must be retransmitted are moved from the FragsToAck
list to the FragsToSend list, and the associated message send
descriptor is placed on the incomplete list.

Each network transport is also responsible for providing a
main memory-to-main memory 32-bit additive checksum or
32-bit cyclic redundancy code (CRC), if it is needed. This
checksum/CRC protects against network and I/O bus cor-
ruption, and is generated at the same time data is copied, if
at all possible. By delaying checksumming to avoid wasting
memory bandwidth, a received fragment is not necessarily
a deliverable, or uncorrupted, fragment.

Several MML generic features aid in the implementation of
this retransmission and checksumming scheme. Every frag-
ment is assigned a monotonically increasing 64-bit sequence
number between a given (sender, receiver) pair of processes.
These sequence numbers are recorded by the receiving pro-
cess in a special object, SeqTrackingList, as an ordered set
of non-contiguous ranges of sequence numbers; these lists
use internal hint pointers to exploit any temporal locality
in accessing these lists to minimize access overhead. The
receiver maintains two SeqTrackingList lists for each peer
with which it communicates to distinguish between frag-
ments that have been received, and those that have been re-
ceived and delivered successfully (i.e., no data corruption).
Duplicate fragments are easily detected by checking the re-
ceived fragment’s sequence number against the received Se-
qTrackingList.

Upon processing fragment acknowledgments from a receiver,
a sender will store two special values that are carried in every
acknowledgment: the largest in-order peer received sequence
number (LIRS), and the largest in-order peer delivered se-
quence number (LIDS). The LIRS is used to prevent the
retransmission of fragments that have been received, but
whose data integrity has not been checked yet; it may in-
crease or decrease over time, depending upon transmission
and I/O bus errors. The LIDS is used to free any fragments
whose acknowledgment was lost. The LIDS is always less
than or equal to the LIRS. Figure 3 shows the interaction
of these sequence numbers, the retransmission scheme, and
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checksumming.

2.2.2 Network Path Interactions
The network path object is an abstraction of lower-level
network transports and devices that are available to LA-
MPI. Each path can represent a single network adapter, or
a set of common adapters, or even a common protocol over
many different network adapters. Currently, paths are im-
plemented for the user datagram protocol [16] (UDP over
all IP-enabled devices), Quadrics Elan3 [14] remote direct
memory access (RDMA), and HIPPI-800 operating system
bypass (SGI IRIX only). Paths are currently being devel-
oped for Myrinet GM [12], and Infiniband [7] (Mellanox
HCA Verbs [10]). In all of our current paths except UDP/IP,
which treats multiple network adapters as a single Internet
Protocol ”device”, multiple network adapters are used by a
single path instantiation, if they exist on the machine. By
fragmenting messages and sending different fragments over
different network adapters, LA-MPI takes advantage of all
of the available bandwidth.

Each path provides a common set of services to the library
(via virtual methods):

• to store/retrieve a handle to a path: bindToContainer(),
getHandle(), and getContainer();

• to control a path’s status and query remote process
reachability: isActive(), activate(), deactivate(), and
canReach();

• to store/retrieve information about a path: getInfo(),
and setInfo();

• to control the ownership of a MPI message: bind(),
and unbind();



• to initialize and send/resend a bound message: init(),
send(), retransmitP(), and resend();

• to query a message’s send status: sendDone();

• to receive message fragments from a path: receive();
and

• to check whether control messages (non-MPI message
data) need sending and to send those control messages:
needsPush(), and push().

Two functions stored in each MPI communicator provide
network path selection on a per-MPI message basis. One
function controls the binding of point-to-point messages,
and the other of multicast messages. These functions can
be manipulated on a per-communicator basis via a get/set
ULM interface. The default functions implement a static hi-
erarchy of network paths based on the nominal bandwidth;
if there is only one path available, the function returns im-
mediately with that one.

At startup, each path does basic initialization, and regis-
ters itself with a global pathContainer. During registration
the pathContainer queries the path to determine which pro-
cesses it can reach via the path. One method, paths(), is used
to find all of the currently active paths to a given process,
and another, allPaths(), is used by ulm make progress() to
poll all active paths for received data.

Figure 4 illustrates the interactions between send messages
and paths. Using these abstractions, LA-MPI supports au-
tomatic network fail-over in the face of general and specific
network failures, including network adapter, switch, and link
failures. The normal cycle of path selection, path bind(),
init(), and send() is interrupted by a network failure. Many
network transports do not provide explicit failure notifica-
tion, so timeouts are used in these cases. Timeouts are either
relatively small for paths that signal data link layer comple-
tion, such as Quadrics Elan3 RDMAs, or, in the face of no
information, much larger to account for maximum acknowl-
edgment periods.

Each path sets its own policy for determining when a path
failure has occurred, and signals that a message needs to be
sent over another path (i.e., rebound to another path) by
returning a path failure error code. If a path manages mul-
tiple network adapters, and another managed adapter can
reach the receiving process, then the path is responsible for
silently retransmitting the affected traffic over that adapter
without signaling failure.

If path failure is signaled and the message rebinds success-
fully, the new path uses a special synchronization protocol
to determine which of the previous path’s fragments were
actually received using the fragments’ unique sequence num-
bers (discussed in section 2.2.1). The receiving process notes
which of the sending process’ outstanding fragments have
been received and/or delivered. It purges those fragments
that have been received but not delivered, and responds
to the sending process with a list of the fragment num-
bers that have not been delivered. Finally, it marks all of
the outstanding ”old” sequence numbers as having been re-
ceived and delivered (to prevent ”old” fragments that might
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Figure 4: Message-Path Interactions.

still be received from being processed). The sending pro-
cess then transmits the missing fragment data over the new
path using new fragments with new unique sequence num-
bers (since there is no guaranteed correspondence between
the two paths’ fragment sizes).

2.2.3 Message Tag Matching
Because LA-MPI supports the concurrent use of multiple
networks, message tag matching is implemented indepen-
dently of the underlying networks. In order to preserve
MPI semantics, messages between any two processes must
be matched by the receiver in the order that they are posted
by the sender. LA-MPI accomplishes this with a message
sequence number that is sent with all fragments of a mes-
sage. Since fragments can be received out-of-order over dif-
ferent network adapters, tag matching can be accomplished
with any of a message’s fragments. This sequence num-
ber increases monotonically, and is unique between a given
sending and receiving process. Each receiving process keeps
track of the next expected sequence number for a given send-
ing process. While this sequence number prevents matching
messages out-of-order from the sending process’ perspective,
message receive descriptors are kept in the order they are
posted through the use of an ordered list to which a de-
scriptor is always appended.

When a message fragment is received, its message sequence
number is either greater than, equal to, or less than the next
expected sequence number. These conditions correspond re-
spectively to receiving a fragment ahead of sequence, receiv-
ing the first fragment of a message that should be matched
immediately, and receiving a fragment for a message that
has already been matched if at all possible. If a fragment’s
message sequence number is greater than the expected se-
quence number, then the fragment is stored on a special ar-
ray of lists for ahead-of-sequence fragments that are indexed
by the sending process’ rank.

If a fragment’s message sequence number is equal to the ex-
pected sequence number, the fragment is matched against
the next appropriate message receive descriptor. If a match
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is not made, then the fragment is stored on a special ok-to-
match array of lists that is indexed by the sending process’
rank. If a match is made, then the fragment is processed
(copied, checksum/CRC verified, and an ACK generated,
as needed), and any fragments of this same message on the
ok-to-match list are also processed. The matched message
receive descriptor is moved to a special list for matched de-
scriptors. In either case, the receiver then increments the
next expected sequence number, and checks the ahead-of-
sequence fragment list for a possible match to the new ex-
pected sequence number.

Finally, if a fragment’s message sequence number is less than
the next expected sequence number, then the fragment must
belong to a message whose first fragment has already ar-
rived. This fragment is processed in almost the same way as
the sequence equality case. If a match was already made by
checking the special matched descriptor list, then the frag-
ment is processed. If a match has not been made, then the
fragment is appended to the ok-to-match list, along with the
first fragment and any other fragments that have previously
arrived. Figure 5 illustrates the entire matching process.

In multi-threaded operation LA-MPI uses an array of receive
locks, indexed by the sending process rank, to prevent race
conditions from the simultaneous posting of message receive
descriptors (e.g., MPI Irecv()), and processing of received
fragments. In processing non-wild-card receive requests,
only threads trying to receive messages from the same send-
ing process must contend for the same locks. Wild-card re-
quests, however, require the acquisition of all receive locks;
the resultant performance degradation is a design trade-off
against the performance gained for non-wild-card requests.

2.3 Send and Receive Layer
The Send and Receive Layer (SRL) consists of multiple net-
work path implementations and a highly optimized shared
memory communication implementation. Each implemen-
tation is independent of the others, and optional run-time
controls can specify which paths should be used, even if oth-
ers are available.

2.3.1 Shared Memory

LA-MPI’s shared memory communication uses shared mem-
ory for the message send descriptor, the message fragment
descriptors, and data. This means that the receiving process
receives 32- or 64-bit pointers to these control structures,
and does not incur the overhead of allocating and describ-
ing receive fragments. The only cost of “data transmission”
is remote access to another processor’s local memory, which
can be relatively considerable on large NUMA machines, es-
pecially with cache coherency. LA-MPI’s memory locality
support is used, however, on NUMA machines with the ap-
propriate support to make sure the control structures and
data are allocated close to the sending process’ processor.
This ensures that at least one of the processes has minimum
latency to the shared memory.

One of the key shared memory communication structures
is a two dimensional array of first-in-first-out (FIFO) lists
indexed by the sending and receiving process’ ranks. This
array of FIFOs is constructed to use memory near the send-
ing process, and is used to transmit the 32- or 64-bit ad-
dresses of fragment descriptors to a receiving process. Since
each FIFO has only one writer, namely the sending process,
cache invalidation thrashing by multiple processors writing
to the same memory is avoided.

The first fragment descriptor of a message (SMPFragDesc t)
is different from all other fragment descriptors (SMPSecond-
FragDesc t); the first fragment descriptor contains all of the
information needed to match the message to a posted receive
descriptor at the receiving process. Once the first fragment
is matched, no further matching is required for that message.
The receiving process puts a pointer to its message receive
descriptor in the first fragment descriptor and the message
send descriptor. If a match has already been made, then the
following fragments of a multi-fragment message are placed
on the receiver’s SMPMatchedFrags list, with a pointer to
the message receive descriptor stored in the fragment de-
scriptor. Otherwise, they are placed on a fragsReadyToSend
list in the message send descriptor so that they can be prop-
erly processed by the receiver upon making a match.

Since all messages need at least one fragment descriptor,
allocation costs are minimized by creating message send de-
scriptors and first fragment descriptors as adjacent, paired
objects. They are then allocated as a single object. As a fur-
ther optimization, the first fragment descriptor can be cre-
ated, and its address transmitted via the fixed FIFO (and an
overflow list) to a receiver before the sender actually copies
message data into shared memory. The receiver’s cost of
matching the first fragment to a message receive descriptor
can be hidden by the time required for the sender to copy
data into shared memory. This is a performance gain for all
messages greater than zero bytes in length.

2.3.2 Network Communication
Each network path has its own design considerations in order
to balance performance, scalability, and memory usage. In
this section we discuss interesting design points for different
network transports and devices without covering them in
exhaustive detail, for brevity’s sake.

LA-MPI’s user datagram protocol (UDP/IP) path imple-
mentation uses two UDP sockets per MPI process. To sup-



port full mesh connectivity between N processes, LA-MPI
needs 2N UDP connection-less sockets, as opposed to N(N-
1)/2 connection-oriented sockets. This scalability becomes
very important in terascale distributed computing environ-
ments with thousands of MPI processes, and was a major
factor in choosing UDP/IP over connection-oriented TCP/IP.

The UDP/IP implementation’s two sockets are used for two
different types of traffic. The short message socket sup-
ports eager sending of small messages, the first fragment
of a multi-fragment message, and control messages such
as fragment acknowledgments. The long message socket
supports fragments of multi-fragment messages that have
already been matched. A multi-fragment message’s first
fragment is sent to the receiving process’ short message
socket. When it is matched and processed, an acknowl-
edgment is generated and sent back to the sending pro-
cess. Upon receiving the acknowledgment, the sender then
sends the remaining fragments to the receiver’s long mes-
sage socket. This protocol ensures that any traffic on the
long message socket can be processed immediately without
additional user-level buffering that must be maintained for
an indefinite period of time.

All UDP/IP message fragments have a fixed MPI header
that is peeked at first (i.e., copied but not deleted from ker-
nel buffers), so that if the fragment’s contents represent con-
tiguous MPI data types, then the data can be placed from
kernel memory to the proper user address via one recvmsg()
call.

LA-MPI’s Quadrics Elan3 RDMA implementation uses a
radically different approach from the UDP/IP implementa-
tion. The Elan3 library provides facilities to create sequen-
tial chains of actions using events, and support for two types
of RDMA writes into a remote process’ 32-bit address space:
a queue DMA that delivers a payload up to 320 bytes to a
remote queue whose access is coordinated between the net-
work adapter and the main processors; and a normal DMA
that delivers an arbitrary payload to a particular virtual
memory address of a remote process. A block copy event
copies the contents of an Elan adapter memory region to
another Elan-addressable region, usually in main memory;
by chaining a block copy event at the end of a set of RDMA
writes, a local process can be notified that all of the previ-
ous RDMA operations have completed. This is extremely
useful, if the ACK protocol has been disabled by run-time
settings, or if the process is trying to detect path failure.

LA-MPI utilizes both of these types of DMAs by sending
fragments’ header information (with 52 bytes of immediate
data payload) and all control messages via queue DMAs
with a queue element size of 128 bytes, and by sending larger
fragments via normal DMAs to Elan3 addressable memory
that has been allocated using a memory request/response
protocol. Fragments with 53 bytes of data or more are sent
using chained DMAs, with the data sent first using a normal
DMA and the header information sent next using a queue
DMA. A special copy event that copies a known value into
an event block in main memory terminates the chain, and is
used to signal the completion of the chained DMA locally.

Each process allocates a single queue per network adapter,
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Figure 6: Quadrics Elan3 Send and Receive Imple-

mentation.

or rail in Quadrics parlance, at the same virtual memory
address. By sending all control information to one of these
queues, LA-MPI minimizes polling overhead. The Elan3
adapter only supports access into a 32-bit virtual memory
address space; on 64-bit architectures the Elan3 adapter can
only access a static portion of the entire process address
space. Since not all memory is guaranteed to be addressable,
a special set of control messages is used between a (sender,
receiver) pair of processes to request elan-addressable mem-
ory buffers. The sender caches these addresses for later use,
and uses them in a last-in-first-out (LIFO) fashion to reduce
the chances of a page fault. The sender maintains a time-
weighted average free list size of these cached addresses, and
lazily releases the average number of buffers on the free list
to the receiver process every couple of minutes. Figure 6
illustrates the basic send and receive mechanisms.

3. SUMMARY AND FUTURE WORK
With the rise of terascale distributed computing environ-
ments consisting of thousands of processors and network
adapters, the need for fault tolerant software has become
critical to their successful use. Negligible component er-
ror and failure rates in small to medium size clusters are
no longer negligible in these large clusters, due to their
complexity, sheer number of components, and amount of
data transferred. LA-MPI addresses the network-related
challenges of this environment by providing a production-
quality, reliable, high-performance Message Passing Inter-
face (MPI) library for applications capable of (a) surviving
network and I/O bus data corruption and loss, and (b) sur-
viving network hardware and software failure if other con-
nectivity is available. In this paper, we have presented an
overview of LA-MPI’s design and implementation.

LA-MPI is currently available as open source software un-
der an LGPL license. It currently runs on Linux (i686 and
Alpha processors), HP’s Tru64 (Alpha only), SGI’s IRIX



6.5 (MIPS), and Apple’s Mac OS X (PowerPC). It supports
shared memory, UDP/IP, Quadrics Elan3 RDMA, HIPPI-
800 OS bypass (IRIX only), and current work is progressing
on Myrinet GM and Infiniband (Mellanox HCA Verbs) com-
munications support. LA-MPI supports job spawning and
control with Platform LSF, Quadrics RMS (Tru64 only),
Bproc [1], and standard BSD rsh. Please send email to
lampi-support@lanl.gov for more information [2]. All fault
tolerance features described in this paper have been fully im-
plemented, except for on-going work on automatic network
fail-over support.

Future papers will present full performance studies of design
trade-offs as part of our on-going optimization of the library.
Future development efforts will address:

• the implementation of a fault-tolerant, scalable, ad-
ministrative network for job control, standard I/O redi-
rection, and MPI wire-up;

• the implementation of process fault-tolerance in the
face of multiple process failures;

• the implementation of dynamic topology reconfigura-
tion and addition of MPI processes to support dynamic
process migration and MPI-2 dynamic processes.
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